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Purpose of review

With ongoing advancements in noninvasive vascular imaging and high-throughput genomics, we have
the opportunity to reclassify the cerebrocervical disorders by these shared associations, rather than their
downstream events, and to better understand etiology, mechanism and preventive treatments going
forward.

Recent findings

The common nonatherosclerotic, large-vessel arteriopathies affecting the cerebrovasculature include
intracranial aneurysms, cervical artery dissection, fibromuscular dysplasia and moyamoya disease.
Together, these entities contribute to a high incidence of devastating cerebrovascular outcomes, including
ischemic stroke and subarachnoid hemorrhage, leading to long-term physical and cognitive disability
frequently in young otherwise healthy adults. In addition to well reported clinical overlap, these polygenic
phenotypes share epidemiological characteristics, environmental risk and a common pathological
weakening of the arterial wall.

Summary

We reviewed both past and present studies relating these shared associations, including reported
candidate gene analyses and genome-wide association data. We also catalogue recent descriptions
of novel arteriopathic syndromes that add to the growing list of monogenic connective tissue disease
affecting the arterial wall, and further inform our understanding of more common polygenic phenotypes.
We also place these cerebrocervical arteriopathies in the context of other systemic nonatherosclerotic,
large-vessel vascular disease (e.g. aortic aneurysm and dissection).
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INTRODUCTION

Cerebrovascular disease has long been categorized
by clinicoanatomic characteristics: ischemic vs.
hemorrhagic, thrombotic vs. embolic, and so
on. Rapid advancements in noninvasive vascular
imaging and high throughput genomics create the
opportunity to reclassify neurovascular disorders
by considering them in the context of shared associ-
ations. This strategy allowed reconceptualizing
small vessel disease through a shared pathogenesis
encompassing lacunar stroke, hypertensive hemor-
rhage, leukoariosis and deep cerebral microbleeds
[1,2

&

,3].
Common nonatherosclerotic, large-vessel cere-

brocervical arteriopathies include intracranial
illiams & Wilkins. Unau
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aneurysms, cervical artery dissection (CeAD), moya-
moya disease and fibromuscular dysplasia (FMD).
Current clinical classification systems (WHO) [4],
TOAST [5], Causative Classification System [6]) fre-
quently lump these as minority causes of stroke [7].
thorized reproduction of this article is prohibited.
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KEY POINTS

� Among arteriopathic connective tissue disorders,
monogenic and polygenic phenotypes share common
clinical, pathological and genetic associations.

� The common nonatherosclerotic, large-vessel,
cerebrocervical arteriopathies include intracranial
aneurysms, cervical artery dissection (CeAD),
moyamoya disease and fibromuscular dysplasia (FMD),
collectively responsible for a large number of incident
strokes among young and healthy adults.

� These arteriopathies share pathogenesis stemming from
loss of structural integrity in the arterial wall; specific
alterations include functional transformation of smooth
muscle cells (SMCs), degradation of the elastic
laminae, functional changes in collagen deposition
and inflammation.

� Appreciating shared associations among these
arteriopathies will guide future etiological research and
hopefully inform potential therapeutic targets to prevent
downstream cerebrovascular events in the future.

Cerebrovascular disease
We reconsider these large-vessel cerebrocervical
arteriopathies on the basis of shared clinical charac-
teristics, pathogenesis and genetic risk, dichotomiz-
ing between monogenic and polygenic phenotypes.
MONOGENIC ARTERIOPATHIC
CONNECTIVE TISSUE DISORDERS

Of the structural elements of the arterial wall,
comprising intima, media and adventitia, tensile
strength relies primarily on smooth muscle cell
(SMC) integrity and collagen type III (COL3A1),
the principal component of the extracellular
matrix (ECM) and the defective gene product in
vascular Ehlers-Danlos IV (vEDS) [8]. Additional
opyright © Lippincott Williams & Wilkins. Unautho
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key components of the ECM include the elastic
lamina, fibroblasts, proteoglycans and fibrillin,
defective in Marfan syndrome [9]. Ultrastructure
of the arterial wall demonstrates numerous poten-
tial targets for congenital weakening (Fig. 1) [10].

These well described and other more recently
defined monogenic connective tissue disorders pre-
dispose to arteriopathy (Table 1) [11–13,14

&

,15
&

,16–
28,29

&

,30–36,37
&

,38,39,40
&

,41–44,45
&

,46,47].
Prevalence ranges broadly from one in 400

for autosomal dominant polycystic kidney disease
(ADPKD) [48,49] to disorders described in single
families. Connective tissue disorders such as
Loeys–Dietz [50] and ‘multisystemic smooth muscle
dysfunction syndrome’ [43] that predispose to
arteriopathy continue to be described.
Common (polygenic) large-vessel
arteriopathies

The relationship between monogenic connective
tissue disease and polygenic phenotypes is unclear.
For example, only 1–2% of intracranial aneurysm or
CeAD cases prove to be syndromic [51–53], with
the majority being spontaneous or idiopathic not
manifesting overt signs of collagen vascular disease.
This discrepancy likely stems from low penetrance
variants and additional nongenetic factors discussed
here.
Intracranial aneurysms

Saccular intracranial aneurysms represent the most
prevalent cerebral large-vessel, nonatherosclerotic
arteriopathy with rupture leading to subarachnoid
hemorrhage (SAH), associated with high mort-
ality and morbidity. Most commonly occurring at
bifurcations with a predilection for the anterior
circulation, biomechanical weakening in the arterial
rized reproduction of this article is prohibited.
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Table 1. Monogenic syndromes with overlapping cerebrocervical and extra-cerebral arteriopathies

Name (abbreviation;
OMIM listing) Gene/locus Inheritance

Cerebrocervical
arteriopathy

Extra-cerebral
arteriopathy Other features

Vascular Ehlers-Danlos
type IV (vEDS;
OMIM 130050)

COL3A1 AD IA, CeAD TAA, AAA,
aortic dissection

Joint and dermal manifestations,
prone to spontaneous rupture
of bowel and large arteries

Marfan syndrome
(MFS; OMIM 154700)

Fibrillin-1 (FBN1) AD IA, CeAD [11] TAA, AAA, aortic
dissection

Hallmark skeletal, ocular and
cardiovascular features.
Arachnodactyly and
subluxation of the lenses

Arterial tortuosity
syndrome (ATS;
OMIM 208050)

SLC2A10 [12] AR IA, CeAD TAA, AAA Generalized tortuosity and
elongation of all major
arteries, soft skin, joint laxity,
severe keratoconus

Adult polycystic
kidney disease (PKD1;
OMIM 173900)

PKD1 AD IA, CeAD TAA, AAA, aortic
dissection

Renal cysts, liver cysts

Adult polycystic kidney
disease (PKD3;
OMIM 600666)

Unknown [13] AD IA Unknown Renal cysts, liver cysts

Loeys-Dietz syndrome
type 1A (LDS1A;
OMIM 608967)

TGFBR1 AD A, CeAD TAA, AAA, aortic
dissection, other
vessel dissection

Triad of arterial tortuosity
and aneurysms, hypertelorism,
bifid uvula/cleft palate;
pregnancy complications

Loeys-Dietz syndrome
type 1B (LDS1B;
OMIM 610168)

TGFBR2 AD IA, CeAD TAA, AAA, aortic
dissection,other
vessel dissection

Indistinguishable from LDS1A

Loeys-Dietz syndrome
type 2A (LDS2A;
OMIM 610380)

TGFBR1 AD IA, CeAD TAA, AAA, aortic
dissection,other
vessel dissection

Phenotypically similar to
vEDS, bifid uvula is usually
only craniofacial feature

Loeys-Dietz syndrome
type 2B (LDS2B;
OMIM 610380)

TGFBR2 AD IA, CeAD TAA, AAA, aortic
dissection, other
vessel dissection

Indistinguishable from LDS2A

Loeys-Dietz syndrome
type 3 (LDS3;
OMIM 613795)

SMAD3 AD IA, CeAD TAA, AAA, aortic
dissection, other
vessel dissection
[14

&

]

Previously known as
aneurysm–osteoarthritis
syndrome [15

&

];
congenital heart disease

Loeys-Dietz syndrome
type 4 (LDS4;
OMIM 614816)

TGFB2 AD IA, CeAD TAA, AAA Skeletal manifestations,
bicuspid aortic valve,
arterial tortuosity,
arachnodactyly, scoliosis,
club feet and thin skin with
easy bruising and striae

Osteogenesis imperfecta
type 1 (OI1; OMIM 166200)

COL1A1 AD CeAD, FMD [16] TAA, AAA Multiple bone fractures,
hearing loss, blue sclera

Alpha-1 antitrypsin
deficiency (OMIM
613490)

SERPINA1 AR FMD [17–21] None Emphysema, liver disease

Psuedoxanthomaelasticum
(PXE; OMIM 264800)

ATP-binding cassette
subfamily C member 6
(ABCC6) [22];
polymorphisms in
xylosyl transferase gene,
XYLT1 (608124) and
XYLT2 (608125) modify
severity of PXE [22]

AR, pseudo-
dominant

IA, [23]; CeAD
[24]

?AAA [25] Mineralized and fragmented
elastic fibers in the skin,
vascular walls and Burch
membrane in the eye

Microcephalic
osteodysplastic primordial
dwarfism type II (MOPD2;
OMIM 210720)

PCNT, pericentrin,
21q22 [26]

AR or compound
heterozygous

IA, moyamoya TAA, AAA Postnatal dwarfism with
microcephaly and
dysmorphia

Neuro-fibromatosis
type 1 (NF1; OMIM
162200)

Neurofibromin gene
(NF1); 17q11.2
[27]

AD IA, moyamoya Coartaction of thoracic
and abdominal aorta,
venous and arterial
aneurysms

Aortic aneurysms,
moyamoya [28]

Grange syndrome
(OMIM 602531); arterial
occlusive disease, progressive,
with hypertension, heart
defects, bone fragility,
and brachysyndactyly

Unknown; unknown
[16,29

&

,30]
Unclear IA, moyamoya TAA, AAA, venous

and arterial aneurysms
Stenosis or occlusion renal,

abdominal and cerebral
arteries. Cerebral aneurysms,
congenital heart defects,
brachydactyly, syndactyly,
bone fragility and learning
disabilities

Nonatherosclerotic cerebrocervical vasculopathies Southerland et al.
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Table 1 (Continued)

Name (abbreviation;
OMIM listing) Gene/locus Inheritance

Cerebrocervical
arteriopathy

Extra-cerebral
arteriopathy Other features

Hereditary angiopathy with
nephropathy, aneurysms
and muscle cramps
(HANAC; OMIM611773)

COL4A1 AD IA [31–34] TAA, AAA, arterial
aneurysms

Associated with a small
vessel arteriopathy
[35,36] and risk of
ICH [37

&

]

Alport syndrome X-linked
(ATS; OMIM 301050)

COL4A5 AD ?CeAD, FMD and
moyamoya [38]

TAA, AAA [39] Progressive
glomerulonephropathy,
variable sensorineural
hearing loss and variable
ocular anomalies

SAMS (stenosis, aneurysm,
moyamoya and stroke)
[40

&

]

SAMHD1 AR or compound
heterozygous

IA, moyamoya [41] ?aortic aneurysm Cerebral vasculopathy and
early onset stroke
[40

&

,41,42]; same gene
mutated in chilblain lupus
(CHBL2; 614415) and
Aicardi-Goutieres syndrome
(AGS5; 612952)

Homocyst(e)inuria
(OMIM 236200)

CBS AR ?CeAD Aortic dissection Marfanoid phenotype

Multisystemic smooth muscle
dysfunction syndrome
(OMIM 613834) a.k.a.
moyamoya type 5 (MYMY5;
OMIM 614042) and familial
thoracic aortic aneurysm
type 6 (AAT6; OMIM 611788)

ACTA2 AD ?IA, moyamoya Aortic dissection,
TAA, AAA
[43,44,45

&

,46]

Mydriasis, patent ductus
arteriosus, hypotonic
bladder, malrotation and
hyperperistalsis of the
gastrointestinal tract

Cutis Laxa type IA; (ARCL1A;
OMIM 219100)

FBLN5 AR IA, FMD [47] TAA, AAA, aortic
dissection

Phenotypically similar to
vEDS; multiple diverticula
(esophagus, duodenum,
ileum, bladder). The other
had pulmonary emphysema

OMIM, Online Mendelian Inheritance in Man database (www.ncbi.nlm.nih.gov/omim). AAA, abdominal aortic aneurysm; AD, autosomal dominant; AR,
autosomal recessive; CeAD, cervical artery dissection; FMD, fibromuscular dysplasia; IA, intracranial aneurysm; ICH, intracerebral hemorrhage; TAA, thoracic
aortic aneurysm.

Cerebrovascular disease
wall leads to outpouching of all three arterial
layers. A variety of ultrastructural defects are associ-
ated with aneurysms, including alteration in the
elastin-to-collagen ratio, SMC transformation and
migration to the intima, and protein dysfunction in
the ECM. Yet, the hallmark pathological feature of
intracranial aneurysm is degradation of the internal
elastic lamina [10,54].

The prevalence of intracranial aneurysm (0.5–
5% in autopsy series) and incidence of aneurysmal
SAH (8–11/100 000 totalling approximately 30 000
cases per year in the USA) varies by region and
population [10,55–60]. An international review of
unruptured aneurysms found an overall pre-
valence of 3.2% [95% confidence interval (CI)
1.9–5.2], with no difference in prevalence ratios
between countries, despite wide variance in SAH
risk [61

&

].
Nonmodifiable risk factors potentially affecting

the risk of aneurysm growth and rupture include
age, sex, race/ethnicity and genomics. Aneurysm
rupture most commonly occurs between 40 and
60 years, peaking in the sixth decade [55,57].
Incidence of SAH is higher in women overall
opyright © Lippincott Williams & Wilkins. Unautho
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(1.6 : 1), but roughly equal in patients younger than
50 years [10,57,60,62]. Sex differences may reflect
hormonal interactions with vascular wall integrity.
A recent meta-analysis confirmed an increased
risk for SAH among postmenopausal women
compared with premenopausal women of the same
age, but failed to show a significant relationship
between hormone replacement therapy and SAH
[63,64

&

].
Risk for intracranial aneurysm rupture also

differs by race and ethnicity. Several community-
based US cohorts demonstrate higher incidences of
SAH in African-Americans and Hispanics than non-
Hispanic whites [58,62,65,66]. Globally, Finland
and Japan have the highest incidence of SAH
[67–69]. Whether genetics or environmental risk
explains these differences remains unresolved.

Data regarding aneurysm size and risk for rup-
ture conflict. The International Study of Unruptured
IAs (ISUIA) reported an overall low risk of SAH for
small (<10 mm) unruptured aneurysms [70,71],
yet the majority of ruptured aneurysms are less
than 10 mm [72]. Aneurysms may experience a
peak period for growth and rupture risk related to
rized reproduction of this article is prohibited.

Volume 26 � Number 1 � February 2013



Nonatherosclerotic cerebrocervical vasculopathies Southerland et al.
hemodynamics, vascular wall integrity and environ-
mental risk factors, especially smoking [73–75,76

&

],
accounting for variance in SAH risk among
aneurysms of the same size and across populations
with the same intracranial aneurysm prevalence.
The high early rerupture risk (50% by 6 months)
contrasting with low rates of long-term recurrence
(3% annually) further supports the notion of peak
vulnerability [77–79].

Familial clustering of intracranial aneurysm and
SAH is found in 10–15% [80], likely an underesti-
mate due to ascertainment bias [81]. Nevertheless,
those with two or more affected family members
have a four-fold risk of harbouring an intracranial
aneurysm compared with the general population
[48,53]. Case–control analyses and linkage studies
identified several candidate genes for intracranial
aneurysm [10]. A large genome-wide association
study (GWAS) of intracranial aneurysm in European
and Japanese populations revealed significant
associations with sequence variants in chromosome
8q11 and 9p21 [82], which were replicated in 406
familial cases from the Familial Intracranial Aneur-
ysm (FIA) Study [83]. Further data from FIA support
the association of these two regions in familial
and sporadic disease [84

&&

] and reinforce a strong
interaction with smoking, the greatest modifiable
risk factor for aneurysmal rupture [83]. Table 2
summarizes currently associated variants for intra-
cranial aneurysm risk [82,83,84

&&

,85–88].
Copyright © Lippincott Williams & Wilkins. Unau

Table 2. Genome-wide associations for intracranial aneury

Locus Nearest gene Study Cohort

11q24–25 FAA1 Ozturk et al. [85],
Worrall et al.
(linkage) [86]

Familial (Eu

9p21 CDKN2BAS/ANRI Bilguvar et al. [82],
Deka et al. [83],
Yasuno et al. [87],
Foroud et al. [84

&&

]

Familial þ s
(Europea

8q11-12 SOX17 Bilguvar et al. [82],
Deka et al. [83],
Yasuno et al. [87],
Foroud et al. [84

&&

]

Familial þ s
(Europea

2q33 PLCL1 Bilguvar et al. [82] European (F
Japanese

10q24 CNNM2 Yasuno et al. [87] European (F
German)

13q13 STARD13, KL (klotho) Yasuno et al. [87] European (F
German)

18q11 RBBP8 Yasuno et al. [87] European (F
German)

4q31 EDNRA Yasuno et al. [88] Finnish, Jap

OMIM, Online Mendelian Inheritance in Man database (www.ncbi.nlm.nih.gov/
disease; CHF, congestive heart failure; CKD, chronic kidney disease; DMII, type
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Cervical artery dissection
Cervical artery dissection – dissection of the carotid
or vertebral arteries – accounts for approximately
20% of ischemic stroke in adults aged 18–50 years
[89,90]. Annual incidence of CeAD is reported as 2–
4/100 000, likely an underestimate due to diagnostic
bias [91,92].

Most CeAD occurs spontaneously, although
minor neck trauma or exertion, ranging from
coughing to riding a roller coaster, is frequently
associated [93

&

,94]. Shear forces are likely only an
environmental trigger in genetically or physio-
logically predisposed individuals [95

&

]. Maximum
wall stress on the cervical arteries occurs with 908
lateral rotation or 458 rotation with hyperextension
[96

&

]. Carotid dissections typically occur at a
susceptible segment several centimeters distal to
the bifurcation, anchored by the trunk proximally
and petrous bone distally [96

&

]. Vertebral dissections
typically involve the vulnerable V2/V3 junction
where the artery exits the C2 transverse foramen
and enters the dura [97]. Additional physiological or
environmental associations include hypertension,
low cholesterol, increased height with low weight,
infection or systemic inflammation, migraine, peri-
partum and a seasonal variation with fall and winter
peaks [89,98

&

,99
&

,100–102].
CeAD mostly occurs between 30 and 50 years

of age, with median age 5–10 years younger in
women than men [98

&

,103,104]. A transient peak
thorized reproduction of this article is prohibited.

sms

Putative function Associations (OMIM)

ropean) Fatty acid metabolism TAA, AAA

poradic
n, Japanese)

Noncoding RNA,
P15 (INK4b),
P16 (INK4a)

CAD, AAA, LAA, DMII

poradic
n, Japanese)

Endothelial cell
metabolism

Congenital kidney and
urinary tract anomalies

innish, Dutch) VEGFR2 signalling

innish, Dutch,
Japanese

Cyclin M2 CAD, HTN, renal tubular
malabsorption of magnesium

innish, Dutch,
Japanese

FGF receptor specificity,
accelerated ageing

Carcinomas, CKD,
hypocalcinosis

innish, Dutch,
Japanese

Retinoblastoma binding
protein, DNA repair

Tumourigenesis

anese Endothelin receptor HTN, CHF, migraine

omim). AAA, abdominal aortic aneurysm; CAD, coronary artery
II diabetes mellitus; HTN, hypertension; TAA, thoracic aortic aneurysm.
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Cerebrovascular disease
in vulnerability seems likely, given high short-term
recurrence rates of stroke or dissection (�25%), and
low long-term recurrence of approximately 1–2%
per year [105–107]. CeAD is uncommon in the
very old, perhaps reflecting a protective stiffening
of arteries over time [108]. Arterial dissections in
children more commonly occur intracranially [109],
whereas pure intracranial dissection in adults is rare
[110].

Ultrastructural abnormalities reflecting inherent
weakening of the arterial wall support a genetic cause
for CeAD. Histologically, this includes medial
degeneration, degradation of the external elastic
lamina, neoangiogenesis of the vasavasorum and
extravasation of blood in the medial–adventitial
border. A generalized arteriopathy is supported by
similar abnormalities in both dissected and clinically
unaffected arteries [111,112,113

&

] and that 15–20%
of incident cases have multivessel dissections [105].
Although most CeAD cases display no other pheno-
typic signs [51,52], subtle indications of under-
lying connective tissue disease include heritable
dermal collagen defects, keloid scarring, aortic root
dilatation and redundant arterial looping or kinking
[114,115–118]. Familial CeAD is rare, associated
with younger age, more commonly polyarterial
and more likely to recur [51,114,119].

Candidate gene analyses in CeAD have
been underpowered and yield few significant or
replicated results [120]. The most robust association
is in the methylenetetrahydrofolate reductase
(MTHFR) variant 677TT; a meta-analysis of five
studies (N¼440 cases) revealed an increased risk
for CeAD in those with the 677TT genotype with
odds ratio equal to 1.67 (95% CI 1.21–2.31) [120].
opyright © Lippincott Williams & Wilkins. Unautho

Table 3. Gene variants in cervical arterial dissection

Gene (variant) Locus Product/function

MTHFR (C677T) 1p36 Folate metabolism,
amino acid synthesis

ICAM1 (469E) 19p13 Immune cell migration
across vascular
endothelium

COL3A1 (3’UTR) 2q31 Type III collagen,
primary component
of ECM and arterial
tensility

COL5A2 (D1429V)a 9q34 Type V collagen; fibrillar
forming; low abundance
in ECM

TGFBR2 (pK372R,
pC138R)b

3p22 Regulates SMC migration
and transformation,
ECM metabolism

ECM, extracellular matrix; SAH, subarachnoid hemorrhage; SCM, smooth muscle c
aGene sequencing (1/60 cases); mutation not found in 150 healthy controls.
bGene sequencing (2/56 cases); mutation not found in 500 healthy controls.

18 www.co-neurology.com
Table 3 [120,121
&

,122
&

] presents reported candidate
gene variants associated with cases of CeAD
[1,12,120].

Replication has recently been completed in the
largest GWAS of CeAD to date – an international
multicenter consortium titled CADISP – Cervical
Artery Dissection and Ischemic Stroke Patients
[123]. With published results pending and an exome
sequencing project underway, the CADISP study
will shed better light on the genetic associations
of CeAD.
Moyamoya disease

Moyamoya, another poorly understood arteriopa-
thy [124

&

], derives its name from the characteristic
angiographic pattern [125]. The name means ‘hazy
puffs of smoke’ describing the small vessel collateral
system that develops in response to hyperplastic
stenosis and occlusion of the distal internal
carotid and proximal vessels of the circle of Willis.
This process may be primary moyamoya disease, a
progressive, often hereditary disorder, or moyamoya
syndrome secondary to vasculopathies, including
atherosclerosis, sickle cell disease and inherited
thrombophilias. Although most patients with
moyamoya disease are children, a second peak
occurs between ages 25 and 50 years [126] with a
slight female predominance [127]. Clinical pre-
sentations differ by age and include cerebral
ischemia, intracerebral hemorrhage and cognitive
impairment.

Moyamoya disease, most common in Asian
countries and in those of Asian ancestry [128],
affects 3–4 per million in Asian countries and less
rized reproduction of this article is prohibited.

Cohort Additional associations

European (Italian,
German), Mexican

Hyperhomocysteinemia,
venous thrombosis

European (German) Inflammation, infarct size, SAH,
aneurysm growth

European (German,
Swiss) familial

Vascular Ehlers-Danlos IV,
familial dermal connective
tissue abnormalities

European (German) Classical Ehlers-Danlos I/II

European (Italian) Loeys-Dietz syndrome

ell. Adapted from [120,121
&

,122
&

].
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Nonatherosclerotic cerebrocervical vasculopathies Southerland et al.
than 1 per million in the USA [128]. Founder
mutations have been reported in Asian populations
[129,130

&

] and potential differences in genetic
architecture may underlie moyamoya disease in
those of Asian vs. European ancestry [131

&

,132].
Most familial cases appear to be autosomal domi-
nant with incomplete penetrance, although other
modes are described, and genomic imprinting has
been implicated [133].

Histologically, moyamoya disease shows charac-
teristic proliferation of transformed SMCs and
fibroblasts with thickening of the intima and
concomitant thinning of the media. The intimal
hyperplasia results in narrowing and ultimately
obstruction of the vessel lumen leading to irregular
collateral networks [134]. Ischemia results from
compromised perfusion through stenosed large
arteries and microthrombi in small vessels due to
slow flow state and proinflammatory milieu [135].
Recurrent hypoxia and reduced blood flow stimu-
lates angiogenic signals and growth factors that may
play a role in aberrant collateralization [136

&

].
These collateral vessels are friable with reduced
structural integrity likely contributing to a higher
risk of hemorrhage.

Five discrete genetic moyamoya disease
syndromes (MYMY1–5) are currently characterized
[27,43,46,133,137,138

&

,139
&

,140,141], and several
additional syndromes manifest moyamoya changes
as part of their phenotypic spectrum [16,26,27].
Moyamoya disease shares risk with other cerebral
and systemic vasculopathies. Table 4 demonstrates
multiple overlaps with systemic and cerebral
aneurysms [16,26–28,29

&

,30,130
&

,137,139
&

,141–
144,145

&

,146
&

,147–150,151
&

].
Others have described a link with FMD [38].

In contrast to FMD, which typically affects the
media, moyamoya is typified by intimal thickening.
Moyamoya disease shares some pathological fea-
tures with FMD, CeAD and intracranial aneurysms
primarily constituting transformation of SMCs
and degraded elastic laminae. The frequency of
moyamoya arterial changes is higher in patients
with CeAD and intracranial aneurysms than the
general population [90,126].
Fibromuscular dysplasia

Extracranial cervical FMD is second to the renal
arteries in prevalence. FMD is characterized by
nonatherosclerotic, alternating dilatation and con-
striction of the arterial wall, giving a banded appear-
ance, and can involve any of the three layers; the
medial type is most common accounting for 90%
of cerebrocervical cases [152]. Defective fibro-
blastic transformation in SMCs leads to downstream
Copyright © Lippincott Williams & Wilkins. Unau
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degradation of the elastic laminae, abnormal
collagen synthesis and segmental fibroplasia
[153,154]. Overall prevalence of cervical FMD ranges
from approximately 0.3 to 3.0% in consecutive
angiographic series [152,154]. Most prevalent in
women of European descent, FMD primarily affects
young and middle-aged adults [155]. The largest
FMD registry to date (N¼447) reveals a mean age
of approximately 52 years, older than previously
reported [156

&

]. A second peak occurs in children
and adolescents, but is more commonly of the
intimal type, with a greater predilection for the
intracranial circulation, similar to CeAD [157].

Incidental diagnosis of cerebrocervical FMD
has increased with availability of noninvasive
vascular imaging, yet the risk of cerebrovascular
events remains controversial. The relationship with
aneurysms and dissection is clearer. In the US FMD
registry, the coprevalence of dissection and aneur-
ysms was 19.7 and 17%, respectively [156

&

].
Of dissections, 75% involved the carotid, 21.6%
renal and 17% vertebral arteries. Of aneurysms,
most were observed in the renal and carotid
arteries, which may also reflect pseudoaneurysms
as sequelae of dissection. Intracranial (11.8%) and
aortic (19.7%) aneurysms likely represented true
aneurysms. Nearly 25% of those in the registry
reported a family history of aneurysm [156

&

].
With a lack of dedicated screening, prevalence of
intracranial aneurysms in those with cerebrocervical
FMD may range from 7.3 to 51% [158]. In a large
series of spontaneous CeAD, FMD is found in 15–
20% of cases [154,159,160] (Southerland, un-
published data). Although these series suggest a
higher than expected coprevalence of FMD with
dissections and aneurysms, diagnostic bias is likely
and rates cannot be generalized to the asympto-
matic FMD population.

Factors associated with FMD include smoking,
exogenous estrogens, mechanical stress, family
history of early cardiovascular disease and even
human lymphocytic antigen type in a series of
renal transplant patients [155,161]. The underlying
cause of FMD is likely genetic, with incomplete
penetrance of a possible autosomal dominant trait
suggested by a number of pedigrees showing higher
prevalence in first-degree relatives and identical
twins [154,162–166]. The FMD registry reveals
self-reported family history in 7.3%, somewhat
lower than reported in prior series and likely an
underestimate given the lack of routine family
screening [156

&

,162,166]. That FMD likely repre-
sents a heritable systemic arteriopathy is further
supported by familial clustering of common
carotid wall abnormalities in cases of renal FMD
compared with matched controls [167,168].
thorized reproduction of this article is prohibited.
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Table 4. Genetics of moyamoya disease

Name Gene, locus Gene function Mode Associated features

MYMY1 3p26–p24.2 [137,142] Matrix metalloproteinase AD

MYMY2 RNF213; 17q25.3
[27,130

&

,139
&

,143,144]
Ubiquitin ligase activity

and ATPase activity
AD Associated with HTN [145

&

]
and important role in
vascular function [146

&

]

MYMY3 Unknown; 8q23 [141] Unknown – TIEG, transforming
growth factor-beta-inducible
early growth response

AD

MYMY4 BRCC3; Xq28 [138
&

,147] Deubiquitinating enzyme X-linked recessive Short stature, hypergonadotropic
hypogonadism and facial
dysmorphism, dilated
cardiomyopathy, premature
graying of the hair and
early-onset cataracts

MYMY5 ACTA2; 10q23.31 [43,46] Mutations promote increased
SMC proliferation, lead a
hyperplastic ‘vasculo-myopathy’ [44]

AD TAA, fusiform cerebral aneurysms,
premature CAD. Initially
reported as hereditary thoracic
aortic aneurysm 6 with
dissection (AAT6) [43]

Moyamoya disease HLA; 6q25 [148–150,151
&

] Molecular mimicry; HLA molecules
acting as receptors for microbes
and drugs; HLA genes as markers
linked with disease-related non-HLA
genes

Complex Potential explanation for regional
differences

Microcephalic
osteodysplastic
primordial dwarfism
type II (MOPD2)

PCNT (pericentrin);
21q22 [26]

Involved in the initial establishment
of organized microtubule arrays
of the centrosome

AR or compound
heterozygous

Cerebral aneurysms, moyamoya

Neurofibromatosis
type 1

NF1 (neurofibromin)
17q11.2 [27]

Tumor suppressor, regulator of
neurotrophin-mediated signalling

AD Cerebral aneurysms,
aortic aneurysms, moyamoya
[28]

Grange syndrome Unknown; unknown
[16,29

&

,30]
Unknown AR Stenosis or occlusion of multiple

arteries, including renal,
abdominal and cerebral arteries.
Cerebral aneurysms, congenital
heart defects, brachydactyly,
syndactyly, bone fragility and
learning disabilities

OMIM, Online Mendelian Inheritance in Man database (www.ncbi.nlm.nih.gov/omim). AD, autosomal dominant; AR, autosomal recessive; CAD, coronary artery
disease; HLA, human leukocyte antigen; HTN, hypertension; SMC, smooth muscle cell; TAA, thoracic aortic aneurysm. Derived from OMIM.

Cerebrovascular disease
Genomic association studies in FMD are lacking. A
systematic screen of 35 patients with FMD for con-
nective tissue genetic variants identified only two
cases with a similar phenotype that had novel var-
iants in the transforming growth factor b receptor1
gene warranting further investigation [169

&

]. Table 5
presents these analyses and other case-reported syn-
dromic associations [11,17–21,163,169

&

,170–175].
The US FMD registry [176] and the ARCADIA/

PROFILE (Assessment of Renal and Cervical Artery
DysplasIA Register et PROgression of FIbromuscular
Lesions) [177] biorepositories are in preparation
for more formal candidate gene and genomic associ-
ation studies.
Shared associations among polygenic
phenotypes

The best argument that large-vessel cervicocerebral
arteriopathies, including aneurysms, dissection,
opyright © Lippincott Williams & Wilkins. Unautho
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moyamoya and FMD, have common roots is
through observed associations with one another.

Epidemiology

Schievink, Mokri, and colleagues suggested a unify-
ing arteriopathy in a 1991 report of three families
with CeAD and intracranial aneurysm in siblings,
and later confirmed a higher prevalence of intra-
cranial aneurysm among nonfamilial CeAD as well
[7,178]. As stated, both dissections and aneurysms
are associated with FMD at higher frequencies
than the general population, as are intracranial
aneurysms in moyamoya disease [126]. A true co-
prevalence between CeAD and FMD with moya-
moya disease has only been reported in isolated
cases and is difficult to distinguish from moyamoya
syndrome resulting from distal carotid stenosis
secondary to these entities [117,168–170]. Genetic
syndromes with coprevalence of arteriopathies
in the cerebral and extra-cerebral circulation exist
rized reproduction of this article is prohibited.
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Table 5. Genetic investigations and syndromic reports of fibromuscular dysplasia

Gene/syndrome Renal Cerebrocervical

ACE Insertion allele associated [170] n/a

AT1R No association [170] n/a

AGT No association [170] n/a

Elastin No association [163] n/a

Alpha-1-antitripsin No association [171]; Case report [20] Case reports [17–19,21]

ACTA2 No association [172] n/a

TGFBR1 n/a No association [169
&

]

TGFBR2 n/a No association [169
&

]

collagen 3A1 n/a No association [169
&

]

smooth muscle a-actin 2 n/a No association [169
&

]

SMAD3 n/a No association [169
&

]

Fibrillin (Marfan syndrome) n/a No association [169
&

]; Case report [11]

Down syndrome Case report [173] n/a

Turner syndrome n/a Case report [174]

Neurofibromatosis I Case report [175] n/a

n/a, not available.

Nonatherosclerotic cerebrocervical vasculopathies Southerland et al.
(Table 1). These clinical and genetic observations
suggest more than a coincidental, common patho-
genesis.

Age

As mentioned, aneurysmal SAH, spontaneous
CeAD and symptomatic FMD all predominate in
adults primarily ranging from 30 to 50 years, with a
separate peak for adult cases of moyamoya. The
reasons for this midlife peak are unclear, especially
as each entity occurs to some degree at all
ages. Natural vascular stiffening or accumulating
atherosclerosis may explain the lower pre-
valence among the elderly. That some traditional
age-related vascular risk factors are inversely
associated with arterial dissection and aneurysm
rupture further supports this idea. For instance,
natural lipid deposition in the vessel wall may
fortify a congenitally weakened artery protecting
it from downstream events such as hemorrhage
or dissection.

If these arteriopathies are genetically pre-
disposed, the reasons why spontaneous CeAD
and aneurysmal SAH are not more prevalent in
adolescents and young adults are unclear. The sep-
arate age peaks for children and adults in moyamoya
disease, FMD and dissection highlight a potential
pathological variance between children and adults
exemplified by the predominance of intimal FMD
and intracranial dissection in children, as opposed
to more medial FMD and extracranial dissection
in adults. Intracranial aneurysms are rarely
reported in children without other phenotypic
connective tissue disease; possible reasons include
Copyright © Lippincott Williams & Wilkins. Unau
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an underdiagnosis due to a low risk of rupture or
more likely an age-dependent component to aneur-
ysm formation. Better understanding of how the
cerebrovascular system ages both morphometrically
and functionally may help unravel the pathogenesis
of these polygenic phenotypes.

Sex

FMD, moyamoya and aneurysmal rupture are all
more prevalent in women. Although CeAD occurs
at roughly equal frequency by sex, women are
consistently younger than men at age of occurrence,
have more vertebral artery involvement and more
commonly present with multiple artery dissections
[98

&

]. Dissection and risk of aneurysm rupture are
more common in the peripartum period, perhaps
related to hormonal shifts or an ever-changing
physiological state [103,179,180]. Limited data
suggest at least some relationship between exo-
genous estrogens and risk for intracranial aneurysm
rupture, incidence of CeAD and symptomatic FMD
[161,181,182].

The biological mechanism of a hormonal
influence on risk for cerebrovascular events in these
arteriopathies remains unknown. Women have
stiffer arteries than men, particularly at younger
ages, but both sexes see decreased arterial compli-
ance with age [183,184]. Estrogen supplementation
increases arterial compliance in postmenopausal
women, as does free testosterone in older
men [185,186]. Arterial compliance is increased in
patients with CeAD compared with age-matched
controls [187,188]. Arterial compliance in aneurysm
growth is clearly increased, but relationships
thorized reproduction of this article is prohibited.
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between compliance and rupture may be more
reliant on structural integrity at time-of-event.

Hormones may influence vessel wall physio-
logy. In rat models of aortic aneurysm, men
have decreased collagen deposition and increased
levels of matrix metalloproteinases (MMPs), a key
mediator of vascular remodelling, in aortic
SMCs and ECM compared with females [189,190].
Estrogen may play a protective role by lowering
MMP levels in the model [191]. MMP levels can
be elevated in CeAD [192], but sex-stratified
differences have not been studied.

Race/ethnicity

Incidence and clinical characteristics vary by phe-
notype across ancestral populations. Investigated
cohorts of CeAD and FMD mostly comprise cases
of European and Asian descent, with limited data for
populations of African descent [123,193,194]. Dis-
section characteristics also differ by race/ethnicity;
Asians have a higher predilection for intracranial
dissection and posterior circulation involvement
[195

&

]. Intracranial aneurysms exhibit consistent
prevalence throughout the world, but rupture
rates vary widely. For instance, rates of aneurysmal
SAH are highest in Japan and Finland despite no
difference in prevalence of unruptured aneurysms
compared with other countries [61

&

]. In the
United States, African-Americans and Hispanics
have higher rates of aneurysmal SAH than non-
Hispanic whites when controlling for additional
risk factors [22,26,29

&

,30]. Moyamoya disease,
most prevalent in Asian populations, is reported
worldwide with higher rates in those of African
descent than those of European descent [196].
These population-based differences are vital to
understanding the genetic heterogeneity. Future
genomic association studies should strive to stratify
with broad race/ethnic representation.

Disease

Disparate pathological processes underlie these
large-vessel arteriopathies likely reflecting their
polygenic origins; however, several unifying com-
ponents stand out (Table 6) [10,54,95

&

,111,112,
113

&

,115,152–154,192,197–206]. A functional trans-
formation in SMCs of the arterial media is a common
denominator for these phenotypes. Other processes,
including degradation of the ECM and inflam-
mation, may be downstream results from this
unifying event. Structural patterns in the vessel wall
are specific to different arterial beds, and alteration
of this homeostasis in different phenotypes likely
promotes arterial fragility and injury in the setting of
otherwise normal physiological or environmental
opyright © Lippincott Williams & Wilkins. Unautho
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stress. Focus on shared disease among these arterio-
pathies should guide future association studies
enlightening the search for therapeutic targets.

Environmental and physiological risk
factors

Traditional vascular risk factors for atherosclerosis
including hyperlipidemia, diabetes mellitus and
high BMI show an inverse relationship with both
arterial dissection and aneurysmal subarachnoid
hemorrhage [99

&

,181,182,207]. Although these
associations may represent epiphenomenae, these
chronic conditions may also provide inherent pro-
tective qualities. Lower cholesterol levels including
treatment with lipid-lowering agents may increase
risk for intracerebral hemorrhage [208–211].
Diabetes mellitus exhibits an inverse association
with abdominal aneurysm formation as well, and
is associated with increased collagen deposition,
cross-linking and decreased degradation of the
ECM in the arterial wall [212

&

,213]. The inverse
relationship with BMI may stem from a particular
phenotypic profile for arteriopathic connective
tissue disease, although most patients with spon-
taneously occurring cases do not exhibit a Marfan’s
phenotype [100].

Hypertension as a risk factor for these arterio-
pathies is challenging to understand [99

&

,161,182],
particularly given its high prevalence in the general
population. The higher frequency of hypertension
in FMD, CeAD, intracranial aneurysm rupture and
moyamoya could reflect biomechanical effects on
the arterial wall or secondary alterations in the
autonomic or renin–angiotensin systems related
to the vasculopathy itself. Although chronic
hypertension is associated with abdominal
aneurysms, the influence on formation of cerebral
aneurysms is less clear. Further, arterial anomalies
(kinking, redundancies and dilatations) typically
seen in hypertension are observed in non-
hypertensive patients with these nonatherosclerotic
arteriopathies.

Smoking, ubiquitous in its adverse effects on the
cerebrovascular system, also interacts with arterial
wall integrity in arteriopathic connective tissue
phenotypes. Dermal changes in chronic smokers
demonstrate its effect on the elastic properties of
connective tissue [214]. Smoking is a significant risk
factor for aneurysmal SAH, particularly in women
[182]. Smoking is more loosely associated with
FMD [155,161]. No similar association with CeAD
has been observed; in fact, smoking might have a
potential protective effect provoking the possibility
of a differential relationship between smoking and
differing arteriopathic phenotypes [99

&

,181].
rized reproduction of this article is prohibited.
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Table 6. Common vessel wall disease for intracranial aneurysms, cervical artery dissection, moyamoya and
fibromuscular dysplasia

Vessel wall
component IA [10,54]

CeAD [95
&

,111,112,113
&

,
115,192,197–200] Moyamoya [201–205] FMD [152–154,206]

SMCs Migration of SMCs from media
to the luminal surface in
vascular wall remodelling

Medial degeneration with vacuolated
SMCs, transformation from contractile
to synthetic type; TGFB mutations in
some

Myointimal thickening with migration
and transformation of SMCs from
contractile to synthetic type

Fibroblastic transformation
of SMCs from contractile
to synthetic

Elastic lamina Degradation of the internal EL
with aneurysm growth

Degradation of external EL at medial-
adventitial border

Duplication and wavy appearance of
the internal EL

Attenuation of elastic fibers
in the media and laminae

Collagen and
elastin

Decrease on collagen type III,
elastin relative to other collagen
types; fewer reticular fibers in
medial layer

Heritable collagen and elastin
abnormalities in skin biopsies;

Collagen:elastin ratio altered,
long segments appear similar to
bifurcations

Abnormal collagen synthesis
from transformed SMCs

Inflammation Constant turnover of proteins in
ECM; increased proteases,
macrophages in wall of both
ruptured and unruptured IA

Temporal association with infection,
inflammatory biomarkers; elevated
serum MMP levels

MMP polymorphisms in association
with moyamoya disease (MYM1)

Case reports of elevated
MMP9, antiphospholipid
antibodies

CeAD, cervical artery dissection; ECM, extracellular matrix; EL, elastic lamina; FMD, fibromuscular dysplasia; IA, intracranial aneurysm; MMP, matrix
metalloproteinase; SMCs, smooth muscle cells.

Nonatherosclerotic cerebrocervical vasculopathies Southerland et al.
Temporal patterns in environmental risk raise
especially vexing questions. For instance, what
additional factor causes pathologically weakened
arteries to dissect at a predictable age with incidental
trauma, perhaps simultaneously, with minimal
lifetime risk of recurrence? What additional factor
causes a small intracranial aneurysm to form,
stabilize for many years, only to grow rapidly and
then rupture? Why does incidentally found FMD
remain asymptomatic, when other cases lead to
stroke, dissection or aneurysm? Is unilateral moya-
moya the same disease as bilateral moyamoya, the
same disease in children as adults? The notion of
transient periods of vascular vulnerability must
be considered when investigating risk and indi-
cates nongenetic factors at play. Associated risk
periods may involve physiological vascular aging,
comorbidities such as migraine, inflammatory proc-
esses or even a seasonal peak for cerebrovascular
events [101,215,216

&

,217]. Better understanding
of environmental and physiological vulnerability
is warranted.

Genetic

As noted in Table 1, there is a considerable genetic
overlap between both the monogenic and poly-
genic large-vessel arteriopathies. In addition,
extra-cerebral phenotypes involving primarily the
aortorenal circulation share clinical, epidemiologi-
cal, histological and genetic features with the cere-
brocervical phenotypes discussed here. Although
a detailed discussion of extra-cerebrocervical
arteropathies is beyond the scope of this review, it
is imperative that these entities be considered in
Copyright © Lippincott Williams & Wilkins. Unau
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pathogenetic classification and future studies of
vascular connective tissue disease.

Recently completed, large, genomic association
studies of both CeAD and intracranial aneurysm,
and a planned association study in FMD, offer the
potential to further elucidate genetic underpinnings
of these polygenic phenotypes. Exome sequencing
may reveal rare risk variants such as the recent
characterization of SMAD3 mutations in a family
of thoracic/abdominal aortic aneurysms and intra-
cranial aneurysms [14

&

].
High throughput RNA expression analysis,

proteomics and epigenomics should facilitate a more
dynamic understanding of genetic function and
pathogenesis. Gene expression analysis in patients
with intracranial aneurysms, for instance, may eluci-
date the cellular processes in the arterialwall that lead
to aneurysm growth and rupture [218,219]. Copy
number variant analysis in moyamoya [220

&

] and
dissection [221

&

] have started to yield results and will
expand our understanding of genetic risk further.
CONCLUSION

In this review of the nonatherosclerotic, large-
vessel cerebrocervical arteriopathies, we propose a
unifying vessel wall pathogenesis affecting different
segments of the arterial tree (Fig. 2). Refined under-
standing of shared associations, common bio-
logy and gene by environment interactions will
hopefully lead to future scientific questions and
ultimately better treatment strategies to prevent
resultant cerebrovascular events in predisposed
individuals going forward.
thorized reproduction of this article is prohibited.
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FIGURE 2. Overlapping relationship of polygenic
cerebrocervical arteriopathies. Conceptual framework for
shared mechanisms of nonatherosclerotic cerebrocervical
large-vessel arteriopathy. FMD, fibromuscular dysplasia.
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